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Abstract-Nonlinear time-domain
numerical modeling requires the
development of absorbing boundary

conditions to effectively absorb the

nonlinear electromagnetic waves. In this

paper, based on Berenger’s PML, the

nonlinear pefiectly matched layer

(nPML) absorbing condition is developed
and implemented in the recently

proposed TLM-based FDTD method.
Numerical results show the effectiveness

of the nPML. The proposed nPML

scheme can also be implemented to

others FD-TD schemes.

I. INTRODUCTION

Because nonlinearity has potential
applications such as all-optical signal

processing (see e.g. [1]-[3] and
references therein), it has received

growing interest [1]-[10][13][14] in

applying it to the design of novel

nonlinear structures for high-speed

communications. However, the analytical

solutions for such nonlinear structures

are in general difficult to find. Therefore,

numerical techniques, in both frequency-

domain [3]-[7] and time-domain [1][8]-

[10][13][14] have to be employed.
Among the numerical techniques in time-

domain are various versions of FDTD

schemes (see [1][8][13][14] and

references therein).

In order to apply these FDTD methods

to open nonlinear structures, an

appropriate absorbing boundary

condition (ABC), which can effectively

absorb nonlinear electromagnetic waves,

needs to be developed. As a result, an

iniinite computation domain can be

truncated with the nonlinear ABCS,

allowing a practical numerical simulation

of an open nonlinear structure.

Since the initial work by Berenger on the
pefiectly matched layer (PML) [1 1],

various numerical experiments have been

performed. The PML has been

demonstrated to be the most effective

ABC for linear electromagnetic wave

propagation so far [1][12] (and

references therein).

A standard PML consists of lossy layers

with both electric and magnetic
conductivities [11]. By appropriately

selecting constitutive parameters, an

extremely-low-reflection from PML

layers is achieved while the waves are

attenuated inside the PML region.

Variations, or improvements of the PML,
have been reported, e.g. [15]. However,

all of the PML schemes developed so far

are limited to the linear wave absorption.
They can not be applied directly to

nonlinear open structures without

modifications.

In this presentation, the standard PML is

adopted to absorb nonlinear
electromagnetic waves by applying

nonlinearity directly to the PML
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permittivity and permeability. The
resultant nonlinear PML (nPML) scheme

is then implemented in the recently

proposed TLM based FDTD scheme
[13]. The numerical results show the

effectiveness of

also be easily
FDTD schemes

[1].

nPML. The nPML can

implemented in other

such as Yee’s scheme

II. Nonlinear PML (nPML)

For simplicity, consider an one-

dimensional Kerr-like nonlinear medium

with the following nonlinear refractive
index [1][3][5][13][14]:

n= no + n,~E~2 (1)

where no is the linear part of the

refractive index and nq is the nonlinear

coefficient of the medium. Generally, the

nonlinear term of (1) is very small

compared to the linear part [1][3][ 14].
Therefore, relative dielectric constant of

the nonlinear medium can be obtained

approximately as follows [1][3][14]:

~, = n’ z n; + 2non,l E12 (2)

To truncate the computing domain of the

nonlinear medium, a nonlinear PML is

constructed. Like the standard linear
PML, the match conditions, which

dictate the relationships among the

electric conductivities, magnetic
conductivities, permittivities, and
permeabilities, are still enforced in the
nPML regions. The difference is that the

medium is now nonlinear. Therefore,
nonlinearity (1) should also be imposed

on the PML permittivity, which will then
change with the electric field intensity. In

the other words, the following modified

match conditions have to be satisfied

simultaneously in the nPML region:

u, a:
= (3)

&oer p

z, = n= E n; + 2non2~E~2 (4)

Note that the permittivity of a nPML
medium is now field-intensity dependent

(and therefore location dependent).

Equation (4) can be solved with a FDTD

recursive algorithm.

To firther reduce the reflections, instead

of terminating a perfect conducting wall
in the last layer of the PML as done in a

standard PML, a resistance wall with
E/H equal to the wave impedance of the

last cell [13] is used to terminate the

npm.

III. Numerical Results

To effect comparison, an one-
dimensional nonlinear medium

terminated at both ends with nPML is

simulated using the TLM based FDTD

method [13 ]. A spatial pulse excitation at

t=O is used. To ensure that a nonlinear

wave is indeed excited, reference

simulations without PMLs for linear and
nonlinear media of the same dimensions,

the same initial excitation, and the same

grids were run, respectively. Figure l(a)

shows the simulation results of the linear

and nonlinear media terminated only with
the same resistance wall (no PML

terminations).

As can be seen, a nonlinear wave is
indeed excited since the linear and

nonlinear waves are shown to behaviour
differently. The significant part of the

differences exist especially for the
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reflected waves. For the linear waves,

both the incident and reflected waves are

symmetric because the initial spatial

excitation is symmetric. However, for the
nonlinear wave, this symmetry breaks

down. The forward- and reflected waves
are asymmetric. In addition, the

magnitude of the reflected nonlinear

wave is larger than that of the linear

wave.

by the proposed npm. The

effectiveness of the nPML is thus shown.

For a quantitative demonstration of the

effectiveness of the nPML, Figure 2

shows the magnitude of the reflected

waves from nPML versus time, recorded

at a fixed spatial point in the computation

domain. It can be seen that the amplitude

of the reflected nonlinear wave is very

small in comparison to the incident wave.

The nPML did absorb the nonlinear wave
very effectively.
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Figure l(a) Comparisons of linear and

Nonlinear waves.

After the existence of the nonlinear wave

was numerically confn-med, PML and

nPML were added in between the

computation domain and the resistance

wall for linear and nonlinear waves,

respectively. Figure l(b) shows the
simulated results.

As can be seen, the reflected waves for

both the linear and nonlinear cases

become invisible. This indicates that the
linear wave is absorbed by the linear

PML and the nonlinear wave is absorbed
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Figure 1(b) Simulation results with linear

and nonlinear PMLs.

IV. Conclusion

A nonlinear perfectly matched layer

(nPML) scheme is presented in this paper

for the effective absorption of nonlinear

electromagnetic waves propagating in a
Kerr-like nonlinear medium. Numerical

experiments demonstrate its validity and
eEectiveness. Although the newly

proposed nPML was implemented in the

TLM based FDTD grid for one-
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dimensional cases, it can be easily

extended to multi-dimensional problems

and implemented in other FDTD schemes

such as standard Yee’s scheme. The

investigation along this line is currently

under way in our laboratory.
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Figure 2: The reflected nonlinear wave

vs time (recorded at a fixed spatial

point). The vertical axis represents the

ratio of the reflected wave normalized to

the maximum magnitude of the incident

wave.
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